Original Article

Formulation and Evaluation of Phenytion Sustain Release Tablets

Kameswararao Sankula*, Dasari Nageswara Rao, Srinath Nissankarrao

Department of Pharmaceutics, Sri Siddhartha Pharmacy College, Ammavarithota, Nuzvidu- 521201, Andhra Pradesh, India.

ARTICLE INFO

Received: 10 Feb 2014
Accepted: 20 Feb 2014

ABSTRACT

The main aim of proposed work was to develop Phenytion matrix tablets, sustained release dosage form, for the treatment of epilepsy. Sustained release formulation is the drug delivery system that is designed to achieve a prolonged therapeutic effect by continuously releasing medication over an extended period of time after administration of single dose. The matrix tablets were prepared by direct compression method using Hydroxylpropylmethylcellulose (HPMC K4M, K15M, K100M), Polyvinylpyrrolidone (PVP K-30) and microcrystalline cellulose (MCC 101) in varying ratios. Tablets blends were evaluated for loose bulk density, tapped bulk density, compressibility index and angle of repose, shows satisfactory results. The compressed tablets were then evaluated for various physical tests like diameter, thickness, uniformity of weight, hardness, friability, and drug content. The granules exhibited satisfactory rheological demeanor. The results of all these tests were found to be satisfactory. The in vitro dissolution study was carried out for 24 hours using paddle method in phosphate buffer (pH 7.4) as dissolution media. Formulation F1 to F7 failed to sustain release and among all the formulations, F8 shows 77% of drug release at the end of 24 hours. This finding reveals that above a particular concentration of MCC 101, HPMC K-100 and PVP K-30 are capable of providing sustained drug release.

1. INTRODUCTION

Sustained release dosage forms are designed to complement the pharmaceutical activity of the medicament in order to achieve better selectivity and gradual release of additional amounts of drug to maintain this effect over a predetermined period. Matrix systems are the most popular method among innumerable methods used in the development of sustained release formulations. Hydrophilic polymeric matrix systems are widely used in controlled drug
Phenytion (S) - 3 - amino methyl hexanoic acid, is a structural analogues of γ-aminobutyric acid (GABA). They constitute an important group of compounds that are used in the treatment of epilepsy and neuropathic pain. It is a white crystalline solid. It is soluble in water and in both basic and acidic aqueous solutions. Phenytion has been studied for use in a variety of disorders, including monotherapy in refractory partial seizures, diabetic neuropathy, surgical dental pain and other pain syndromes, post herpetic neuralgia, and social anxiety disorders. Phenytion’s innovator is Pfizer-Global and appears world-wide under the brand name Lyrica. The half-life of Phenytion is also short (5-6.5 hrs) which makes it suitable candidate for sustained release formulation, moreover it reducing side effects, decreasing frequency and improve patient compliance. Keeping these factors in view it is aimed to formulate and evaluate sustained release matrix tablets, to provide a controlled and predictable release of Phenytion, which is an oral antiepileptic drug used in the management of epilepsy. For the sustain release layer it was intended to use four different polymers to formulate a polymer matrix systems namely hydroxylpropyl methyl cellulose (HPMC K4M,K15M,K100M), Polyvinylpyrrolidone (PVP K-30) and Microcrystalline cellulose (MCC 101 ).

2. MATERIALS AND METHODS

2.1 Materials
Phenytion, HPMC K4M HPMC K 15M,HPMC K100M,PVP K30, MCC PH101, Mg.Stearate and aerosil were obtained from Spectrum Pharma lab, Hyderabad. All the other ingredients used were of analytical grade.

2.2 Method of Preparation of Matrix Tablets

All ingredients was collected and weighed accurately. Sifted Phenytion and polymers through sieve no. 60# and then rinsed with remaining excipients. Sifted colloidal silicon dioxide (Aerosil-200) and magnesium stearate separately, through sieve no. 60#. Preblending of all ingredients (except lubricant magnesium stearate) in blended for 15 minutes. Blend then again blended for 5-6 min then added magnesium stearate blended 5 min. Lubricated powder was compressed by rotary machine having circular concave shaped and one side break line on upper punch, with pressure of 7-8 tons. Compressed tablets were examined as per official standards and unofficial tests. Prior to the compression the drug and polymers were evaluated for several tests. The composition of different formulation of Phenytion was given in table.No.1.

### Table 1: Formulation composition of phenytion sustained release tablets

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGREDIENT</td>
<td>NTS</td>
<td>NTS</td>
<td>NTS</td>
<td>NTS</td>
<td>NTS</td>
<td>NTS</td>
<td>NTS</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.V.P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerosil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg.stearate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenytion(drug)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total weight (mg)</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

2.3 Evaluation of tablet blends

Angle of repose:
The angle of repose of tablet blends was determined by the funnel method. The blends were allowed to flow through the funnel freely onto the surface. The
diameter of the powder cone was measured and angle of repose was calculated using the following equation.

\[ \tan \theta = \frac{h}{r} \]

Where ‘h’ and ‘r’ are the height and radius of the powder cone, respectively.

**Bulk density:**

Apparent bulk density was determined by pouring a weighed quantity of tablet blends into graduated cylinder and measuring the volume and weight.

**Tapped density** = Mass of powder / Tapped Volume of the powder

**Tapped bulk density:**

It was determined by placing a graduated cylinder, containing a known mass of drug-excipient blend. The cylinder was allowed to fall under its own weight onto a hard surface from the height of 10 cm at 2 second intervals. The tapping was continued until no further change in volume was noted.

Tapped density = Weight of powder / Tapped volume of the powder

**Carr’s index:**

Carr’s compressibility index CI (Carr, 1965) is defined as follows:

\[ \text{CI} = \frac{\rho_t - \rho_a}{\rho_t} = \frac{V_a - V_t}{V_t} \]

Where \( \rho_t \) and \( \rho_a \) – tapped and poured bulk density; And \( V_t \) and \( V_a \) – tapped and poured bulk volume respectively.

**Hausner’s ratio:**

A similar index has been defined by Hausner.

**Estimation of Drug Content**

The weighed amount of powdered Phenytion (100 mg) was extracted with water and the solution

An accurately weighed amount of powdered Phenytion (100 mg) was extracted with water and the solution

**Table 2: Physical characteristics of prepared blends of Phenytion**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>F-1</th>
<th>F-2</th>
<th>F-3</th>
<th>F-4</th>
<th>F-5</th>
<th>F-6</th>
<th>F-7</th>
<th>F-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle of repose</td>
<td>29°</td>
<td>30°</td>
<td>29°</td>
<td>32°</td>
<td>30°</td>
<td>31°</td>
<td>32°</td>
<td>22°</td>
</tr>
<tr>
<td></td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Bulk density</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

**2.4 Evaluation of Tablets**

**Thickness**

The thicknesses of the tablets were determined using a Vernier caliper, 20 tablets from each batch were used and average values were calculated.

**Uniformity of weight**

Every individual tablet in a batch should be in uniform weight and weight variation in within permissible limits. The weights were determined to within ±1mg by using digital balance. Weight control is based on a sample of 20 tablets.

**Friability Test**

The pre-weighed tablets were placed in the friabilator (EF-2, Electro lab, Mumbai) which was then operated for 100rpm, then dusted and reweighed. The Conventional compressed tablets that lose more than 0.5-1.0% of their weight are generally considered acceptable.

\[ I = F \]

**Friability index = \( \text{X} \times 100 \)**

\[ \text{I} \]

Where, \( I \) - Initial weight, \( F \) - Final weight

**Weight variation test**

Weights of 20 individual tablets were noted and their mean weight also calculated. The percentage deviation was calculated by using the following formula,

**Percentage deviation = \( \frac{\text{X} - \text{X}^*}{\text{X}} \times 100 \)**

\( X \) - Actual weight of the tablet

\( X^* \) - Average weight of the tablet

**Estimation of Drug Content**

An accurately weighed amount of powdered Phenytion (100 mg) was extracted with water and the solution

© International Journal of Pharma Research and Health Sciences. All rights reserved
was filtered through 0.45 μm membrane filter paper. The absorbance was measured at 275 nm after suitable dilution.

**Calculation**

The amount of Phenytion present in tablet can be calculated using the formula

\[ \frac{A_t}{A_s} \times \frac{S_w}{100} \times 100 \]

Where,

- \( A_t \) = Absorbance of sample preparation
- \( A_s \) = Absorbance of Standard preparation
- \( S_w \) = weight at Metformin working standard (mg)

**In vitro release studies:**

**Dissolution test:**

In vitro dissolution test was carried out by using USP type II (paddle) apparatus. 1000 mL of acetate buffer pH 7.4 with 1% triton X-100 was used as dissolution medium and the paddle was rotated at 50 rpm at temperature (37°C ± 0.5°C). Sampling was done at regular intervals and was replaced by media after each sampling interval. The samples are then analysed spectrophotometrically at \( \lambda_{max} \) 275nm of the drug. (FDA method).

**Medium:** phosphate buffer pH 7.4

**Volume:** 900ml

**Temperature:** 37°C±0.5°C

**Apparatus:** USP type-II (paddle)

**RPM:** 50 RPM

**Time interval:** 1 hr up to 24 hrs

**Release Kinetics:**

The analysis of drug release mechanism from a pharmaceutical dosage form is an important but complicated process and is practically evident in the case of matrix systems. As a model-dependent approach, the dissolution data was fitted to four popular release models such as zero-order, first-order, diffusion and Peppa’s- Korsemeyer equations, which have been described in the literature. The order of drug release from matrix systems was described by using zero order kinetics or first orders kinetics. The mechanism of drug release from the matrix systems was studied by using Higuchi equation and Peppa’s-Korsemeyer equation.

**Zero Order Release Kinetics**

It defines a linear relationship between the fractions of drug released versus time.

\[ Q = k_o t \]

Where, \( Q \) is the fraction of drug released at time \( t \) and \( k_o \) is the zero order release rate constant.

A plot of the fraction of drug released against time will be linear if the release obeys zero order release kinetics.

**First Order Release Kinetics:**

Wagner assuming that the exposed surface area of a tablet decreased exponentially with time during dissolution process suggested that drug release from most of the slow release tablets could be described adequately by apparent first-order kinetics. The equation that describes first order kinetics is

\[ \ln(1 - Q) = -K_1 t \]

Where, \( Q \) is the fraction of drug released at time \( t \) and \( K_1 \) is the first order release rate constant. Thus, a plot of the logarithm of the fraction of drug remained against time will be linear if the release obeys first order release kinetics.

**Higuchi equation:**

It defines a linear dependence of the active fraction released per unit of surface \( Q \) on the square root of time.

\[ Q = K_2 t^{1/2} \]

Where, \( K_2 \) is the release rate constant.

A plot of the fraction of drug released against square root of time will be linear if the release obeys Higuchi equation. This equation describes drug release as a diffusion process based on the Fick’s law, square root time dependant.

**Power Law:**

© International Journal of Pharma Research and Health Sciences. All rights reserved
In order to define a model, which would represent a better fit for the formulation, dissolution data was further analyzed by Peppa’s and Korsemeyer equation (Power Law).

$$M_t/M_\infty = K_t^n$$

Where, $M_t$ is the amount of drug released at time $t$ and $M_\infty$ is the amount released at time $\alpha$, thus the $M_t/M_\infty$ is the fraction of drug released at time $t$, $k$ is the kinetic constant and $n$ is the diffusion exponent. To characterize the mechanism for both solvent penetration and drug release $n$ can be used as abstracted in Table. A plot between log of $M_t/M_\infty$ against log of time will be linear if the release obeys Peppa’s and Korsemeyer equation and the slope of this plot represents “$n$” value (diffusion coefficient) which describes mechanism of diffusion.\textsuperscript{11}

3. RESULTS AND DISCUSSIONS

3.1 Preformulation studies

Drug excipient compatibility studies were performed by force degradation and Fourier transform infrared spectroscopy. Results obtained from (Figure.No:1&2) showed that drug and excipients were compatible with each other.

Fig 1: FTIR spectrum of pure drug

Fig 2: FTIR spectrum of optimized formula

3.2 Evaluation of pre-compression parameters

The present investigation was undertaken to design, formulate and evaluate Phenytion matrix tablets for sustained release dosage form. The blends of different formulations were evaluated for angle of repose, bulk density, tapped bulk density, compressibility index and hausner’s ratio. The results of bulk density, tapped bulk density, compressibility index and hausner’s ratio are mentioned in (Table .No.2). The bulk density of the tablet blend was in the range of 0.30± 0.05 to 0.35± 0.03 g/ml; the tapped density was in the range of 0.41± 0.02 to 0.45± 0.04 g/ml, which indicates that the powder was not bulky. The blend indicated good flow properties for all the formulation with the angle of repose values 22° 41’±0.55 to 32° 21’±0.39 according to fixed funnel and free standing cone method. The results of compressibility index lies between range from 18.57±1.17 to 29.06±1.21, while hausner’s ratio lies between 1.14±0.06 and 1.22±0.05 indicating good to excellent flow properties.

3.3 Physicochemical evaluation of Phenytion sustained release tablets

The tablets of different batches formulated were evaluated for test such as hardness, friability, thickness, uniformity of weight and drug content. The results obtained from all formulations were within the range. The weight variation test indicates that all the tablets were uniform with low standard deviation values and hence all formulation passed the test for uniformity of weight. The tablets mean thickness values ranged from 5.8±0.11 mm to 6.2±0.44 mm. The hardness of all the tablets was within the range of 7±0.03 to 7±0.08 kg/cm\textsuperscript{2}.The loss in friability test was in a range of 0.07 to 0.14%. The percentage drug content for different tablet formulations were discrete from 97.24% to 99.34%, were found to be within range (table.No.3).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>F-1</th>
<th>F-2</th>
<th>F-3</th>
<th>F-4</th>
<th>F-5</th>
<th>F-6</th>
<th>F-7</th>
<th>F-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformity of weight (mg)</td>
<td>497±4</td>
<td>498±1</td>
<td>500±1</td>
<td>500±1</td>
<td>498±2</td>
<td>499±1</td>
<td>498±2</td>
<td>497±2</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>6.8±</td>
<td>7.1±</td>
<td>6.8±</td>
<td>7.2±</td>
<td>6.9±</td>
<td>6.8±</td>
<td>7.2±</td>
<td>6.9±</td>
</tr>
<tr>
<td>Friability</td>
<td>0.09</td>
<td>0.14</td>
<td>0.08</td>
<td>0.07</td>
<td>0.12</td>
<td>0.13</td>
<td>0.04</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Sankula et al. [1]

% Tablet
Hardness (Kp)

<table>
<thead>
<tr>
<th>Tablet</th>
<th>7±0.05</th>
<th>7±0.03</th>
<th>7±0.04</th>
<th>7±0.01</th>
<th>7±0.02</th>
<th>7±0.03</th>
<th>7±0.04</th>
<th>7±0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>99.1</td>
<td>98.6</td>
<td>97.2</td>
<td>99.1</td>
<td>99.3</td>
<td>97.1</td>
<td>99.2</td>
<td>98.1</td>
</tr>
</tbody>
</table>

3.4 In vitro drug release studies

In vitro dissolution studies (Table.No.4&Figure.No.3) of all the formulations of sustained release tablets of Phenyntion were carried out in pH 7.4 phosphate buffers for 24 hours. Only three (F2, F4, F5 and F8) tablet formulations showed acceptable properties as shown in (Table.No.4).

Table.No.4. In-vitro drug release studies of prepared Phenyntion sustained release tablets

<table>
<thead>
<tr>
<th>Time (hrs)</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>14.1</td>
<td>4.7</td>
<td>5.7</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>5.5</td>
<td>6.26</td>
<td>14</td>
<td>14</td>
<td>11</td>
<td>3.8</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>56.2</td>
<td>11</td>
<td>23.1</td>
<td>22</td>
<td>22</td>
<td>26</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>25</td>
<td>58</td>
<td>43</td>
<td>31</td>
<td>43.2</td>
<td>29.2</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
<td>59</td>
<td>79.9</td>
<td>57</td>
<td>51.2</td>
<td>77</td>
<td>71.2</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>78</td>
<td>95</td>
<td>73</td>
<td>72</td>
<td>85</td>
<td>85</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>100</td>
<td>87</td>
<td>100</td>
<td>88</td>
<td>85</td>
<td>96</td>
<td>97</td>
<td>7</td>
</tr>
</tbody>
</table>

Fig 3: Cumulative percent drug release profile of Phenyntion sustained release tablets (F1-F8)

The result of the dissolution study indicating that F1, F3, F6 and F7 released almost drug at the end of 16hrs, here we observed that on decreasing the proportion of HPMC K-100 and on increasing the quantity of MCC 101 and PVPK-30, it retards the drug release from matrix. This might be due to slow hydration of matrix and its property to form a thick gel layer, which retard the drug release from the tablet. It is expected that the developed formulation should have the following theoretical drug release profile, i.e., 100% for 24 hrs. Formulations F1, F3, F6 and F7 failed to meet the needed theoretical drug release profile. Formulation F8 release 77%( not<75%) drug at the end of 24 hrs, for these reasons, it was considered the best formulation among all the six formulations of this series.

3.5 In-Vitro drug release kinetics:

The kinetic data analysis of all the formulations (Table.No.5) reached higher coefficient of determination with the Korsmeyer-Peppas model (R² = 0.911 to 0.990) whereas release exponent value (n) ranged from 0.498 to 0.743. From the coefficient of determination and release exponent values, it can be suggested that the mechanism of drug release follows Korsmeyer-Peppas model along with non-Fickian diffusion mechanism which leading to the conclusion that a release mechanism of drug followed combination of diffusion and spheres erosion.

Table 5: Release kinetic Coefficient of Correlation (R²) values of tablets

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Zero order</th>
<th>First order</th>
<th>Higuchi matrix</th>
<th>Korsmeyer-peppas</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0.985</td>
<td>0.953</td>
<td>0.96</td>
<td>0.989</td>
</tr>
<tr>
<td>F2</td>
<td>0.911</td>
<td>0.945</td>
<td>0.964</td>
<td>0.969</td>
</tr>
<tr>
<td>F3</td>
<td>0.984</td>
<td>0.953</td>
<td>0.964</td>
<td>0.992</td>
</tr>
<tr>
<td>F4</td>
<td>0.94</td>
<td>0.994</td>
<td>0.996</td>
<td>0.975</td>
</tr>
<tr>
<td>F5</td>
<td>0.982</td>
<td>0.986</td>
<td>0.996</td>
<td>0.911</td>
</tr>
<tr>
<td>F6</td>
<td>0.986</td>
<td>0.997</td>
<td>0.998</td>
<td>0.952</td>
</tr>
<tr>
<td>F7</td>
<td>0.973</td>
<td>0.772</td>
<td>0.993</td>
<td>0.991</td>
</tr>
<tr>
<td>F8</td>
<td>0.96</td>
<td>0.997</td>
<td>0.993</td>
<td>0.991</td>
</tr>
</tbody>
</table>

4. CONCLUSION

In the above view of findings it can be concluded that the combination of HPMC and PVPK30 are better suited for sustained drug delivery system than polymer alone. A matrix design of this kind can serve as an alternative strategy to modified drug delivery system.
5. REFERENCES


