The Fascinating Bird’s Nest Mushroom, Secondary Metabolites and Biological Activities

Waill A Elkhateeb*, Ghoson M Daba

Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt.

Abstract: Background: Mushrooms are generous source of nutritional and medicinal compounds. Bird’s nest fungi are a gasteromyceteous group of mushrooms named for their similarity in shape to small bird’s nests. They are considered from the tiniest and most interesting mushrooms all over the world. It is usually found in shady moist environments, and typically survive on plant debris, soil, decaying wood, or animal’s excrement. Bird’s nest mushrooms are inedible, though they were not previously reported to be poisonous, due to their tiny size. Object: This review aims to put bird’s nest mushrooms under light spot through describing their morphology and ecology especially of the most common fungus, Cyathus haller. Moreover, discussing important secondary metabolites and biological activities exerted by bird’s nest mushrooms. Conclusion: bird’s nest mushrooms are able to produce many novel and potent secondary metabolites that exerted different bioactivities especially as antimicrobial, antitumor, and anti-neuro inflammation activities. Further studies and investigations are encouraged in order to find more about this interesting tiny mushroom.

Keywords:Bird’s nest fungi, Cyathus spp., secondary metabolites, biological activities.


  1. Wasser SP, Weis AL. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives. Int J Med Mushrooms 1999; 1: 1-10.‏
  2. Kang HS, Jun EM, Park SH, Heo SJ, Lee TS, Yoo ID, et al. Cyathusals A, B, and C, antioxidants from the fermented mushroom Cyathus stercoreus. J Nat Prod 2007; 70, 1043-5.
  3. Kang HS, Kim KR, Jun EM, Park SH, Lee TS, Suh JW, et al. Cyathuscavins A, B, and C, new free radical scavengers with DNA protection activity from the Basidiomycete Cyathus stercoreus. Bioorganic Med Chem Lett 2008; 18: 4047-50.‏
  4. Elkhateeb WA, Daba GM, Thomas, PW, Wen TC. Medicinal mushrooms as a new source of natural therapeutic bioactive compounds. Egypt Pharmaceut J 2019; 18: 88-101.‏
  5. Robles-Hernández L, González-Franco AC, Soto-Parra JM, Montes-Domínguez FE. Review of agricultural and medicinal applications of basidiomycete mushrooms. Tecnociencia Chihuahua 2008; 2: 95-107.‏
  6. El-Hagrassi A, Daba G, Elkhateeb WA, Ahmed, E, Negm El-Dein A, Fayad W, et al. In vitro bioactive potential and chemical analysis of the n-hexane extract of the medicinal mushroom, Cordyceps militaris. Malays J Microbiol 2020; 16: 40-8.
  7. Rahi DK, Rajak RC, Shukla KK, Pandey AK. Diversity and nutraceutical potential of wild edible mushrooms of Central India. Microbial Diversity: Current Perspectives and Potential Applications 2005; 967-80.‏
  8. Wasser S. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed J 2014; 37: 1-10.‏
  9. Rahi DK, Malik D. Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. J Mycol 2016; 1-10.‏
  10. Lin SY, Chen YK, Yu HT, Barseghyan GS, Asatiani MD, Wasser SP, et al. Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. Int J Med Mushrooms 2013; 15: 1-10.‏
  11. Elkhateeb WA, Daba GM, Elnahas M, Thomas P, Emam M. Metabolic profile and skin-related bioactivities of Cerioporus squamosus hydromethanolic extract. Biodiversitas Journal of Biological Diversity 2020; 21(10).‏
  12. Elkhateeb WA, Daba G. The endless nutritional and pharmaceutical benefits of the Himalayan gold, Cordyceps; Current knowledge and prospective potentials. Biofarmasi Journal of Natural Product Biochemistry 2020; 18: 70-7.
  13. Elkhateeb WA, Daba GM. Termitomyces Marvel Medicinal Mushroom Having a Unique Life Cycle. Open Access Journal of Pharmaceutical Research 2020; 4: 1-4.
  14. Daba GM, Elkhateeb W, ELDien AN, Fadl E, Elhagrasi A, Fayad W, et al. Therapeutic potentials of n-hexane extracts of the three medicinal mushrooms regarding their anti-colon cancer, antioxidant, and hypocholesterolemic capabilities. Biodiversitas Journal of Biological Diversity 2020; 21: 1-10.‏
  15. Elkhateeb WA. What medicinal mushroom can do?. Chem Res J 2020, 5: 106-18.‏
  16. Barbosa MM, Cruz RH, Calonge FD, Baseia IG. Two new records of Cyathus species for South America. Mycosp 2014; 5: 425-8.‏
  17. Gehrig I, Bart HJ, Anke T, Germerdonk R. Influence of morphology and rheology on the production characteristics of the basidiomycete Cyathus striatus. Biotechnol Bioeng 1998; 59: 525-33.‏
  18. Zhao R, Desjardin D, Soytong K, Hyde K. A new species of bird’s nest fungi: characterisation of Cyathus subglobisporus sp. nov. based on morphological and molecular data. Persoonia: Molecular Phylogeny and Evolution of Fungi 2008; 21: 71.‏
  19. Martin MP, Cruz RH, Duenas M, Baseia IG, Telleria MT. Cyathus lignilantanae sp. nov., a new species of bird’s nest fungi (Basidiomycota) from Cape Verde Archipelago. Phytotaxa 2015; 236: 161-72.
  20. Accioly T, Cruz RH, Assis NM, Ishikawa NK, Hosaka K, Martín MP, et al. Amazonian bird's nest fungi (Basidiomycota): Current knowledge and novelties on Cyathus species. Mycoscience 2018; 59: 331-42.‏
  21. Zhou TX, Zhao LZ, Zhao RL, Chen YH. Bird’s nest fungi from China. Fungal Divers 2004; 17: 243-51.
  22. Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo JM, Ge ZW, et al. Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 2006; 98: 982–95.
  23. Miller OK Jr, Miller HH. Gasteromycetes: Morphological and Development Features with Keys to the Orders, Families, and Genera. Eureka, CA, USA: Mad River Press,1988.
  24. Kanad DA, Hembrom ME, Parihar A, Zhao RL. A new species of Cyathus (Agaricaceae) from India. Turk J Botany 2015; 40: 97-103.‏
  25. Zhao R, Jeewon R, Desjardin DE, Soytong K, Hyde KD. Ribosomal DNA phylogenies of Cyathus: is the current infrageneric classification appropriate? Mycologia 2007; 99: 385–95.
  26. Das K, Zhao R. Bird’s nest fungi in India: a new record from Sikkim. In: Biju KA, Nayar MP, Varma RV, Peethambaran CK, editors. Biodiversity and taxonomy, New Delhi, India: Narendra Publishing House, 2012, 61–8.
  27. Das K, Zhao R. Nidula shingbaensis sp. nov., a new bird’s nest fungus from India. Mycotaxon 2013; 125: 53–8.
  28. Kirk PM, Cannon PF, Minter DW, Stalpers JA. Dictionary of the Fungi, 10th Ed., CABI, UK.2008.
  29. Thind IP. Distribution of gasteromyceteous fungi in north western Himalayas. In: Dargan JS, Atri NS, Dhingra GS, editors. Fungi Diversity and Conservation in India, Dehradun, India: Bishen Singh Mahendra Pal Singh, 2005; 183–91.
  30. Nakada M. Enantio selective total syntheses of cyathane diterpenoids. Chem Rec 2014; 14: 641-62.‏
  31. Taofiq O, Martins A, Barreiro MF, Ferreira IC. Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends Food Sci Technol 2016; 50: 193-210.‏
  32. Kamo T, Imura Y, Hagio T, Makabe H, Shibata H, Hirota M. Anti-inflammatory cyathane diterpenoids from Sarcodon scabrosus. Biosci Biotechnol Biochem 2004; 68: 1362-5.‏
  33. Yin X, Wei J, Wang WW, Gao YQ, Stadler M, Kou RW, et al. New cyathane diterpenoids with neurotrophic and anti-neuroinflammatory activity from the bird's nest fungus Cyathus africanus. Fitoterapia 2019; 134: 201-9.‏
  34. Bai R, Zhang CC, Yin X, Wei J, Gao JM. Striatoids A–F, cyathane diterpenoids with neurotrophic activity from cultures of the fungus Cyathus striatus. J Nat Prod 2015; 78: 783-8.‏
  35. Liu YJ, Zhang KQ. Antimicrobial activities of selected Cyathus species. Mycopathologia 2004; 157: 185-9.‏
  36. Shittu OB, Alofe FV, Onawunmi GO, Ogundaini AO, Tiwalade TA. Mycelial growth and antibacterial metabolite production by wild mushrooms. Afr J Biomed Res 2005; 8: 157-62.‏
  37. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 2013, 138: 155-75.‏
  38. Lin CW, Wu MJ, Liu IY, Su JD, Yen JH. Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression. J Agric Food Chem 2010; 58: 4477-86.‏
  39. Menzies FM, Fleming A, Caricasole A, Bento C, Andrews SP, Ashkenazi A. ubinsztein DC. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 2017; 93: 1015-34.‏
  40. Waters SP, Tian Y, Li YM, Danishefsky SJ. Total synthesis of (-)-scabronine G, an inducer of neurotrophic factor production. J Am Chem Soc 2005; 127: 13514–5.
  41. Tang D, Xu YZ, Wang WW, Yang Z, Liu B, Stadler M, et al. Cyathane diterpenes from cultures of the bird’s nest fungus Cyathus hookeri and their neurotrophic and anti-neuroinflammatory activities. J Nat Prod 2019; 82: 1599–608.
  42. Wei J, Guo WH, Cao CY, Kou RW, Xu YZ, Górecki M, et al. Polyoxygenated cyathane diterpenoids from the mushroom Cyathus africanus, and their neurotrophic and anti-neuroinflammatory activities. Sci Rep 2018; 8: 1-15.‏
  43. Tang HY, Yin X, Zhang CC, Jia Q, Gao JM. Structure diversity, synthesis, and biological activity of cyathane diterpenoids in higher fungi. Curr Med Chem 2015; 22: 2375–91.
  44. Richter C, Helaly SE, Thongbai B, Hyde KD, Stadler M. Pyristriatins A and B: pyridino-cyathane antibiotics from the basidiomycete Cyathus cf. striatus. J Nat Prod 2016; 79: 1684–8.
  45. Cao CY, Zhang CC, Shi XW, Li D, Cao W, Yin X, et al. Sarcodonin G derivatives exhibit distinctive effects on neurite outgrowth by modulating NGF signaling in PC12 cells. ACS Chem Neurosci 2018; 9: 1607–15.
  46. Kou RW, Du ST, Li YX, Yan XT, Zhang Q, Cao CY, et al. Cyathane diterpenoids and drimane sesquiterpenoids with neurotrophic activity from cultures of the fungus Cyathus africanus. J Antibiot 2019; 72:15–21.
  47. Yin X, Qi J, Li Y, Bao ZA, Du P, Kou R, et al. Terpenoids with neurotrophic and anti-neuroinflammatory activities from the cultures of the fungus Cyathus stercoreus. Nat Prod Res 2020, 1-10.‏
  48. Han J, Chen Y, Bao L, Yang X, Liu D, Li S, et al. Anti-inflammatory and cytotoxic cyathane diterpenoids from the medicinal fungus Cyathus africanus. Fitoterapia 2013; 84: 22-31.‏
  49. Xu Z, Yan S, Bi K, Han J, Chen Y, Wu Z, et al. Isolation and identification of a new anti-inflammatory cyathane diterpenoids from the medicinal fungus Cyathus hookeri Berk. Fitoterapia 2013; 86: 159-62.‏
  50. Enquist JA, Stoltz BM. Synthetic efforts toward cyathane diterpenoid natural products. Nat Prod Res 2009; 26: 661-80.‏
  51. Wei J, Cheng Y, Guo WH, Wang DC, Zhang Q, Li D, et al. Molecular diversity and potential anti-neuroinflammatory activities of cyathane diterpenoids from the Basidiomycete Cyathus africanus. Sci Rep 2017; 7: 1-14.‏
  52. Öztürk M, Tel-Çayan G, Muhammad A, Terzioğlu P, Duru ME. Mushrooms: a source of exciting bioactive compounds. In Studies in Natural Products Chemistry 2015; 45: 363-456.‏
  53. Kushairi N, Tarmizi NA, Phan CW, Macreadie I, Sabaratnam V, Naidu M, et al. Modulation of neuroinflammatory pathways by medicinal mushrooms, with particular relevance to Alzheimer's disease. Trends Food Sci Technol 2020; 104: 153-62.
  54. Phan CW, David P, Naidu M, Wong KH, Sabaratnam V. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol 2015; 35: 355-68.‏
  55. De Silva DD, Rapior S, Sudarman E, Stadler M, Xu J, Alias SA, et al. Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 2013; 62: 1-40.‏